Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biochimie ; 200: 99-106, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1866907

ABSTRACT

The emergence of the COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a great threat to global health. ORF9b, an important accessory protein of SARS-CoV-2, plays a critical role in the viral host interaction, targeting TOM70, a member of the mitochondrial translocase of the outer membrane complex. The assembly between ORF9b and TOM70 is implicated in disrupting mitochondrial antiviral signaling, leading to immune evasion. We describe the expression, purification, and characterization of ORF9b alone or coexpressed with the cytosolic domain of human TOM70 in E. coli. ORF9b has 97 residues and was purified as a homodimer with an molecular mass of 22 kDa as determined by SEC-MALS. Circular dichroism experiments showed that Orf9b alone exhibits a random conformation. The ORF9b-TOM70 complex characterized by CD and differential scanning calorimetry showed that the complex is folded and more thermally stable than free TOM70, indicating strong binding. Importantly, protein-protein interaction assays demonstrated that full-length human Hsp90 is capable of binding to free TOM70 but not to the ORF9b-TOM70 complex. To narrow down the nature of this inhibition, the isolated C-terminal domain of Hsp90 was also tested. These results were used to build a model of the mechanism of inhibition, in which ORF9b efficiently targets two sites of interaction between TOM70 and Hsp90. The findings showed that ORF9b complexed with TOM70 prevents the interaction with Hsp90, and this is one major explanation for SARS-CoV-2 evasion of host innate immunity via the inhibition of the interferon activation pathway.


Subject(s)
COVID-19 , SARS-CoV-2 , Carrier Proteins/metabolism , Escherichia coli/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Pandemics , Protein Binding
2.
Trends Parasitol ; 38(4): 269-271, 2022 04.
Article in English | MEDLINE | ID: covidwho-1757761

ABSTRACT

Mitochondria regulate energy production, cell cycle, and immune signaling. Li et al. recently reported that Toxoplasma gondii induces the shedding of mitochondrial outer membrane to promote its growth. Intriguingly, the hijacking of host mitochondria has been shown to play an essential role in the pathogenesis of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
COVID-19 , Toxoplasma , Humans , Mitochondria/metabolism , SARS-CoV-2 , Toxoplasma/physiology
4.
Int J Mol Sci ; 21(19)2020 Oct 01.
Article in English | MEDLINE | ID: covidwho-1389385

ABSTRACT

Tom70 is a versatile adaptor protein of 70 kDa anchored in the outer membrane of mitochondria in metazoa, fungi and amoeba. The tertiary structure was resolved for the Tom70 of yeast, showing 26 α-helices, most of them participating in the formation of 11 tetratricopeptide repeat (TPR) motifs. Tom70 serves as a docking site for cytosolic chaperone proteins and co-chaperones and is thereby involved in the uptake of newly synthesized chaperone-bound proteins in mitochondrial biogenesis. In yeast, Tom70 additionally mediates ER-mitochondria contacts via binding to sterol transporter Lam6/Ltc1. In mammalian cells, TOM70 promotes endoplasmic reticulum (ER) to mitochondria Ca2+ transfer by association with the inositol-1,4,5-triphosphate receptor type 3 (IP3R3). TOM70 is specifically targeted by the Bcl-2-related protein MCL-1 that acts as an anti-apoptotic protein in macrophages infected by intracellular pathogens, but also in many cancer cells. By participating in the recruitment of PINK1 and the E3 ubiquitin ligase Parkin, TOM70 can be implicated in the development of Parkinson's disease. TOM70 acts as receptor of the mitochondrial antiviral-signaling protein (MAVS) and thereby participates in the corresponding system of innate immunity against viral infections. The protein encoded by Orf9b in the genome of SARS-CoV-2 binds to TOM70, probably compromising the synthesis of type I interferons.


Subject(s)
Immunity, Innate , Mitochondrial Membrane Transport Proteins/chemistry , Animals , Betacoronavirus/genetics , Binding Sites , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Open Reading Frames , Protein Binding , Protein Transport , SARS-CoV-2
5.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: covidwho-1374427

ABSTRACT

SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is the causative agent of the COVID19 pandemic. The SARS-CoV-2 genome encodes for a small accessory protein termed Orf9b, which targets the mitochondrial outer membrane protein TOM70 in infected cells. TOM70 is involved in a signaling cascade that ultimately leads to the induction of type I interferons (IFN-I). This cascade depends on the recruitment of Hsp90-bound proteins to the N-terminal domain of TOM70. Binding of Orf9b to TOM70 decreases the expression of IFN-I; however, the underlying mechanism remains elusive. We show that the binding of Orf9b to TOM70 inhibits the recruitment of Hsp90 and chaperone-associated proteins. We characterized the binding site of Orf9b within the C-terminal domain of TOM70 and found that a serine in position 53 of Orf9b and a glutamate in position 477 of TOM70 are crucial for the association of both proteins. A phosphomimetic variant Orf9bS53E showed drastically reduced binding to TOM70 and did not inhibit Hsp90 recruitment, suggesting that Orf9b-TOM70 complex formation is regulated by phosphorylation. Eventually, we identified the N-terminal TPR domain of TOM70 as a second binding site for Orf9b, which indicates a so far unobserved contribution of chaperones in the mitochondrial targeting of the viral protein.


Subject(s)
COVID-19/transmission , Coronavirus Nucleocapsid Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , SARS-CoV-2/pathogenicity , Animals , Binding Sites/genetics , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/isolation & purification , Humans , Interferon Type I/immunology , Interferon Type I/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/isolation & purification , Mitochondrial Precursor Protein Import Complex Proteins , Mutation , Phosphoproteins/genetics , Phosphoproteins/immunology , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Phosphorylation , Protein Binding/genetics , Protein Binding/immunology , Protein Domains/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL